报告题目:A General Family of Coherent Risk Measure in Finance
报 告 人:虞克明 英国布鲁内尔大学
报告时间:2025年7月15日(周二)下午15:30
报告地点:经管学院C301会议室
报告人简介:
虞克明(Keming Yu),英国伦敦布鲁内尔大学统计学与数据科学讲座教授 (Chair Professor)、布鲁内尔大学数学学科研究影响中心主任、统计与数据分析硕士研究生课程主任、英国皇家统计协会会士。虞克明教授已在 Journal of the American Statistical Association , Journal of the Royal Statistical Society , Journal of Econometrics , Journal of Business & Economics Statistics , Electronic Journal of Statistics , Statistica Sinica , Bernoulli , Journal of Multivariate Analysis , Journal of Time Series Analysis , Technometrics , Neurocomputing 等国际权威统计学期刊发表论文160余篇,其研究成果获得广泛引用(Google学术总引用量 10,190余次,H-index 36)。在美国斯坦福大学发布的全球前2%顶尖科学家排行榜(World's Top 2% Scientists)中,虞教授自该榜单2019年首次发布起,连续多年入选。虞教授还受邀担任 Journal of the American Statistical Association , A&CS , The Royal Statistical Society Series A , The Royal Statistical Society Series C , Statistical Science and Its Interface , Journal of Statistical Theory and Practice Review 等国际期刊的 Associate Editor。
报告内容简介:
This talk introduces the innovative concept of General Quantile Regression (GQR), which not only applies to regression models beyond the mean but also serves as a coherent risk measure. Many traditional regression models and risk measures can be viewed as special cases of GQR. As a flexible non-parametric regression model, GQR demonstrates outstanding performance in handling high-dimensional and large datasets, particularly those generated by distributed systems, offering a convenient framework for their statistical analysis. We derive the corresponding estimators and develop their asymptotic properties. Simulations and real data analyses are conducted to illustrate the finite-sample performance of the proposed methods.